Quinone-Hydroquinone π -Conjugated Redox Reaction Involving Proton-coupled Electron Transfer Plays an Important Role in Scavenging Superoxide by Polyphenolic Antioxidants

Tatsushi Nakayama and Bunji Uno*

Gifu Pharmaceutical University, Mitahora-higashi, Gifu 502-8585

(Received December 10, 2009; CL-091099; E-mail: uno@gifu-pu.ac.jp)

The proton-coupled electron transfer (PCET) from p -, o -, and m-dihydroxybenzenes (PQH₂, OQH₂, and MQH₂, respectively) to the hydroperoxy radical (HO_2^{\bullet}) derived from superoxide $(O_2^{\bullet -})$ is investigated. It is demonstrated that quinonehydroquinone π -conjugated redox systems characterized by electron transfer in PQH2 and OQH2 moieties play an important role in scavenging $O_2^{\bullet -}$ by polyphenolic antioxidants.

Special attention has been directed to polyphenolic anti $oxidants$ such as flavonoids¹ that can prevent biomolecules from undergoing oxidative damage through free-radical-mediated reactions.² It is well recognized that phenolic antioxidants play a protective role by interrupting chain reactions, such as lipid peroxidation, ascribed to H-atom-transfer and single-electrontransfer reactions to intermediate radicals.^{3,4} On the hand, O_2 ^{\bullet –} is an important biological intermediate that is formed in living cells⁵ and in particular is overproduced in tissues subjected to chronic infection and inflammation.⁶ Hence, $O_2^{\bullet-}$ is known to cause oxidative DNA damage in living tissues under inflammatory conditions.⁷ However, the $O_2^{\bullet-}$ scavenging mechanism of phenolic antioxidants remains unclear. So far, it is considered that the reaction of $O_2^{\bullet-}$ with acidic substrates such as phenols involves an initial proton transfer from the substrate to O_2 ^{$\bullet -$} to give HO_2^{\bullet} , followed by rapid dismutation to give H_2O_2 and O_2 . The substrate anion is oxidized by the $O₂$ from the dismutation process.⁸ This mechanism is referred to as the superoxidefacilitated oxidation (SFO) reaction.⁹ Neither the electron transfer between phenolic compounds and $O_2^{\bullet-}$ (or HO_2^{\bullet}) nor the nature of such reactions has been investigated. Recently, it has been demonstrated that nitrosodisulfonate radical as a model of HO_2^{\bullet} readily oxidizes quercetin to a radical anion.¹⁰ This result inspires research into the electron-transfer mechanism between HO_2^{\bullet} and phenolic antioxidants against the SFO mechanism. This study proposes the PCET mechanism from

phenolate ions to HO_2^{\bullet} as an $O_2^{\bullet-}$ scavenging reaction and shows the structural properties and π -conjugation effects of positional isomers making up polyphenolic antioxidants on the PCET scavenging reaction of $O_2^{\bullet -}$.

The presence of MQH₂ induces an apparent effect upon the O_2/O_2 ^{•–} electrochemistry,¹¹ as shown in Figure 1a. The change from a monoelectronic to a bielectronic O_2 reduction process in the presence of phenol has been well documented.^{8,12} In light of these results, it is rationalized that $O_2^{\bullet-}$ formation after the primary electron-transfer step associated with proton transfer from MOH₂ leads to the irreversible overall reduction of $O₂$ to H_2O_2 , driven by the exergonic reduction of the resulting HO_2^{\bullet} . This is supported by the fact that addition of $MQH₂$ to a DMF solution containing equimolar sodium methylate does not affect the electrochemistry of O_2 . In contrast, the presence of PQH_2 is not only associated with an apparent decrease in the reversibility of the O_2/O_2 ^{\bullet -} redox couple but is also associated with the progressive growth of a new cathodic peak and two anodic peaks (A, B, and C in Figure 1b). Remarkably, the O_2 reduction remains a monoelectronic process despite full loss of the $O_2/$ $O_2^{\bullet-}$ reversibility. This indicates that the HO_2^{\bullet} produced in the electrochemical process is consumed immediately in the reaction with PQH⁻, without being reduced on the electrode. The electron transfer from PQH^- to HO_2^{\bullet} has been inferred from ESR and optically transparent thin-layer electrode (OTTLE) spectroelectrochemical measurements, which show the generation of PQ^{\bullet –} despite the applied potentials corresponding to O₂ reduction (Figures 2a and 2b).¹³ In addition, the new redox wave (peak A/B in Figure 1b) is assigned to reversible $PQ^{\bullet-}/PQ^{2-}$ electron transfers as supported by the fact that the OTTLE spectral change corresponds to the PQ^{2-} generation (Figure 2c), and that peak C in Figure 1b corresponds to oxidation of $PQ^{\bullet-}$ to PQ. The spectra and the redox potentials observed here were in complete agreement with those obtained from sequential reduction of PQ.¹⁴ In the case of OQH₂, loss of O₂/O₂^{\bullet -}

Figure 1. Cyclic voltammograms of 4.8×10^{-3} mol dm⁻³ O₂ in the absence and in the presence of MQH₂ (a), PQH₂ (b), and OQH₂ (c), observed at a scan rate of 0.1 V s^{-1} in DMF containing 0.1 mol dm⁻³ TPAP. Concentrations of QH₂ are 0, 1, 2, 3, and 5×10^{-3} mol dm⁻³. A typical voltammogram in the presence of PQH₂ (15 \times 10⁻³ mol dm⁻³) was also illustrated by a bold solid line in Fig. b.

Figure 2. ESR spectra of the O_2 solution containing PQH₂ (left) and OQH₂ (right) obtained by the controlled-potential electrolysis at an applied potential of -1.2 V (a), and spectral change of the O_2 solution containing PQH₂ with the OTTL electrolyses over applied potentials corresponding to the $O_2^{\bullet-}$ generation (b) and over applied potentials corresponding to peak A in Figure 1b (c), observed in DMF containing 0.1 mol dm⁻³ TPAP. Concentrations of PQH₂ and OQH₂ are 1.0×10^{-3} mol dm⁻³. The OTTL spectra were observed as differential spectra from those of neutral PQH2.

reversibility without change to a bielectronic process was observed in the cyclic voltammograms of $O₂$ (Figure 1c), and the OQ^{*-} generation ascribed to reaction of OQH⁻ with HO_2^{\bullet} was confirmed by ESR spectra (Figure 2a), in analogy with the case of PQH₂. As the $OQ^{\bullet -}/OQ^{2-}$ redox potential is more positive than the $O_2/O_2^{\bullet -}$ potential, it is deduced that the new cathodic peak (peak A in Figure 1c) may be ascribed to the rereduction of OQ^{$\bullet -$} to OQ²⁻. Thus, the new anodic peak (peak B in Figure 1c) may be due to electrochemical oxidation of OQ^2 to $OQ^{\bullet - 15}$ These experimental results indicate that the hydroxy groups located in the p - and o -positions play an important role in the electron-transfer reaction with HO_2^{\bullet} .

By analogy with the SFO mechanism, $O_2^{\bullet-}$ formed after the initial electron uptake at the electrode protonates the $PQH₂$, to afford HO_2 [•] and PQH⁻. HO_2 [•] rapidly undergoes reaction with PQH^- (eq 1) in preference to either heterogeneous reduction at the potential or a disproportionation reaction.

$$
HO_2^{\bullet} + PQH^{-} \rightarrow H_2O_2 + PQ^{\bullet -}
$$
 (1)

It is rationalized that reaction (1) involves PCET rather than single-electron transfer, as suggested by recent theoretical investigations.3,16,17 Within this framework, the occurrence of a fast ECC (electrochemical-chemical-chemical) sequence is attributed to the exergonic interaction between HO_2^{\bullet} and $PQH^$ and the thermodynamic stability of the ensuing $PQ^{\bullet -}$. Prior to PCET from PQH⁻ to HO_2^{\bullet} , the couple will form a prereaction hydrogen-bonded complex involving OH of PQH⁻ and one of the O lone pairs on HO_2 ^{*}. UB3LYP/6-31+G(d) calculation results indicate that the complex is nearly planar and is predicted to lie 131.0 kJ mol⁻¹ lower in energy than the separated reactants. This situation is expected given that the PCET reaction involves three atomic centers and occurs through the migration of the proton of PQH^- across the hydrogen bond to an O lone pair on HO_2^{\bullet} , as is shown in Figure 3.^{3,16} The reaction of OQH₂ with O_2 ^{\bullet –} is explained by the same ECC mechanism. However, a crucial difference in the PCET reaction for MOH₂ seems to be the low stability of the resulting $MQ^{\bullet-}$. The UB3LYP/6-31+G(d) calculated H° value of MQ^{*} is 57.6 and 27.6 kJ mol⁻¹ higher than that of PQ^{\bullet -} and OQ \bullet ⁻, indicating that π -conjugation stability in MQ^{\bullet -} is less than that in either PQ \bullet - or OQ \bullet -. The radical anions are an intermediate in the quinone-hydroquinone electron-transfer systems conjugated with proton transfers. This implies that the quinone-hydroquinone π -conjugated redox systems characterized by electron transfer in the PQH₂ and

Figure 3. Schematic showing the plausible mechanism for PCET between PQH^- and HO_2^{\bullet} . Proton transfer occurs between O lone-pair σ -type orbitals that are nominally in the plane of the molecular framework. Electron transfer between O π -type orbitals that are orthogonal to the molecular framework accompanies the proton transfer.

OQH₂ moieties play an important role in the scavenging of O_2 ^{\bullet -} by polyphenolic antioxidants.

In conclusion, it has been demonstrated that $PQH₂$ and OQH_2 moieties are essential to scavenge $O_2^{\bullet -}$ via PCET. It is suggested that the antioxidant action of flavonoids relates to a planar preference of the ensuing radicals that allows extended electronic delocalization between adjacent rings.¹⁸ In this respect, natural polyphenolic antioxidants characterized by $PQH₂$ and $OQH₂$ moieties may have strong activity in scavenging $O_2^{\bullet -}$ in association with stabilization of PQ^{$\bullet -$} and OQ $\bullet -$ by adjacent rings.

References and Notes

- 1 R. J. Williams, J. P. E. Spencer, C. Rice-Evans, [Free Rad](http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001)ical Biol[. Med.](http://dx.doi.org/10.1016/j.freeradbiomed.2004.01.001) 2004, 36, 838; C. A. Rice-Evans, N. J. Miller, G. Paganga, [Free Rad](http://dx.doi.org/10.1016/0891-5849(95)02227-9)ical Biol. Med. 1996, 20, 933.
- 2 F. Visioli, G. Bellomo, C. Galli, Biochem. Bi[ophys. Res.](http://dx.doi.org/10.1006/bbrc.1998.8735) [Commun.](http://dx.doi.org/10.1006/bbrc.1998.8735) 1998, 247, 60.
- 3 J. S. Wright, E. R. Johnson, G. A. Di Labio, [J. Am. Chem.](http://dx.doi.org/10.1021/ja002455u) Soc. 2001, 123[, 1173.](http://dx.doi.org/10.1021/ja002455u)
- 4 M. Leopoldini, I. P. Pitarch, N. Russo, M. Toscano, [J. Phys.](http://dx.doi.org/10.1021/jp035901j) [Chem. A](http://dx.doi.org/10.1021/jp035901j) 2004, 108, 92.
- 5 I. Fridovich, J. Biol[. Chem.](http://dx.doi.org/10.1074/jbc.272.30.18515) 1997, 272, 18515; J. S. Valentine, P. J. Hart, E. B. Gralla, Adv. Exp. Med. Biol. 1999, 448, 193.
- 6 B. Halliwell, [Mutat. Res.](http://dx.doi.org/10.1016/S1383-5742(99)00009-5) 1999, 443, 37.
- 7 H. C. Birnboim, Carci[nogenes](http://dx.doi.org/10.1093/carcin/7.9.1511)is 1986, 7, 1511; H. C. Birnboim, M. Kanabus-Kaminska, Proc. Natl[. Acad. Sc](http://dx.doi.org/10.1073/pnas.82.20.6820)i. [U.S.A.](http://dx.doi.org/10.1073/pnas.82.20.6820) 1985, 82, 6820; A. C. Bagley, J. Krall, R. E. Lynch, Proc. Natl[. Acad. Sc](http://dx.doi.org/10.1073/pnas.83.10.3189)i. U.S.A. 1986, 83, 3189; I. Fridovich, Arch. Bi[ochem. B](http://dx.doi.org/10.1016/0003-9861(86)90526-6)iophys. 1986, 247, 1.
- 8 E. J. Nanni, Jr., M. D. Stallings, D. T. Sawyer, [J. Am. Chem.](http://dx.doi.org/10.1021/ja00533a029) Soc. 1980, 102[, 4481;](http://dx.doi.org/10.1021/ja00533a029) D. T. Sawyer, G. Chiericato, C. T.

Angelis, E. J. Nanni, T. Tsuchiya, Anal[. Chem.](http://dx.doi.org/10.1021/ac00248a014) 1982, 54, [1720;](http://dx.doi.org/10.1021/ac00248a014) C. P. Andrieux, P. Hapiot, J. M. Saveant, [J. Am. Chem.](http://dx.doi.org/10.1021/ja00246a040) Soc. 1987, 109[, 3768.](http://dx.doi.org/10.1021/ja00246a040)

- 9 C. Sotiriou, W. Lee, R. W. Giese, [J. Org. Chem.](http://dx.doi.org/10.1021/jo00294a033) 1990, 55, [2159.](http://dx.doi.org/10.1021/jo00294a033)
- 10 S. Hodaka, R. Komatsu-Watanabe, T. Ideguchi, S. Sakamoto, K. Ichimori, K. Kanaori, K. Tajima, [Chem. Lett.](http://dx.doi.org/10.1246/cl.2007.1388) 2007, 36[, 1388](http://dx.doi.org/10.1246/cl.2007.1388).
- 11 Cyclic voltammetry was performed with a three-electrode system consisting of a GC disk electrode, a Pt wire counter electrode, and an $Ag/AgNO_3$ reference electrode at 25 °C. The DMF solution containing 0.1 mol dm^{-3} tetrapropylammonium perchlorate (TPAP) as a supporting electrolyte was saturated with O_2 by bubbling the gas for ca. 2–3 min. The equilibrium concentration of O_2 was calculated as 4.8×10^{-3} mol dm⁻³.
- 12 S. Peressini, C. Tavagnacco, G. Costa, C. Amatore, [J.](http://dx.doi.org/10.1016/S0022-0728(02)00838-0) El[ectroana](http://dx.doi.org/10.1016/S0022-0728(02)00838-0)l. Chem. 2002, 532, 295.
- 13 In the case of MQH2, no signal for the radical generation showing the electron transfer from MQH⁻ to HO₂[•] was obtained by ESR spectrometry.
- 14 B. Uno, N. Okumura, M. Goto, K. Kano, [J. Org. Chem.](http://dx.doi.org/10.1021/jo991590q) 2000, 65[, 1448.](http://dx.doi.org/10.1021/jo991590q)
- 15 The redox potential of the $OQ^{\bullet-}/OQ^{2-}$ couple was estimated as $E_{\text{pc}} = -0.70 \text{ V}$ and $E_{\text{pa}} = -0.63 \text{ V}$ by the cyclic voltammetry of OQH2 in DMF containing sodium methylate.
- 16 J. M. Mayer, [Annu. Rev. Phys. Chem.](http://dx.doi.org/10.1146/annurev.physchem.55.091602.094446) 2004, 55, 363; J. M. Mayer, D. A. Hrovat, J. L. Thomas, W. T. Borden, [J. Am.](http://dx.doi.org/10.1021/ja012732c) [Chem. Soc.](http://dx.doi.org/10.1021/ja012732c) 2002, 124, 11142.
- 17 PCET is differentiated from H-atom-transfer reactions by the fact that it occurs when a proton and an electron are transferred between different sets of molecular orbitals. See ref 14 and Figure 3.
- 18 N. Russo, M. Toscano, N. Uccella, J. Agri[c. Food Chem.](http://dx.doi.org/10.1021/jf990469h) 2000, 48[, 3232.](http://dx.doi.org/10.1021/jf990469h)