Quinone–Hydroquinone π -Conjugated Redox Reaction Involving Proton-coupled Electron Transfer Plays an Important Role in Scavenging Superoxide by Polyphenolic Antioxidants

Tatsushi Nakayama and Bunji Uno*

Gifu Pharmaceutical University, Mitahora-higashi, Gifu 502-8585

(Received December 10, 2009; CL-091099; E-mail: uno@gifu-pu.ac.jp)

The proton-coupled electron transfer (PCET) from p-, o-, and m-dihydroxybenzenes (PQH₂, OQH₂, and MQH₂, respectively) to the hydroperoxy radical (HO₂•) derived from superoxide (O₂•-) is investigated. It is demonstrated that quinonehydroquinone π -conjugated redox systems characterized by electron transfer in PQH₂ and OQH₂ moieties play an important role in scavenging O₂•- by polyphenolic antioxidants.

Special attention has been directed to polyphenolic antioxidants such as flavonoids¹ that can prevent biomolecules from undergoing oxidative damage through free-radical-mediated reactions.² It is well recognized that phenolic antioxidants play a protective role by interrupting chain reactions, such as lipid peroxidation, ascribed to H-atom-transfer and single-electrontransfer reactions to intermediate radicals.^{3,4} On the hand, $O_2^{\bullet-}$ is an important biological intermediate that is formed in living cells⁵ and in particular is overproduced in tissues subjected to chronic infection and inflammation.⁶ Hence, $O_2^{\bullet-}$ is known to cause oxidative DNA damage in living tissues under inflammatory conditions.⁷ However, the $O_2^{\bullet-}$ scavenging mechanism of phenolic antioxidants remains unclear. So far, it is considered that the reaction of $O_2^{\bullet-}$ with acidic substrates such as phenols involves an initial proton transfer from the substrate to $O_2^{\bullet-}$ to give HO_2^{\bullet} , followed by rapid dismutation to give H_2O_2 and O_2 . The substrate anion is oxidized by the O₂ from the dismutation process.8 This mechanism is referred to as the superoxidefacilitated oxidation (SFO) reaction.9 Neither the electron transfer between phenolic compounds and $O_2^{\bullet-}$ (or HO_2^{\bullet}) nor the nature of such reactions has been investigated. Recently, it has been demonstrated that nitrosodisulfonate radical as a model of HO₂[•] readily oxidizes quercetin to a radical anion.¹⁰ This result inspires research into the electron-transfer mechanism between HO₂• and phenolic antioxidants against the SFO mechanism. This study proposes the PCET mechanism from phenolate ions to HO_2^{\bullet} as an $O_2^{\bullet-}$ scavenging reaction and shows the structural properties and π -conjugation effects of positional isomers making up polyphenolic antioxidants on the PCET scavenging reaction of $O_2^{\bullet-}$.

The presence of MQH₂ induces an apparent effect upon the $O_2/O_2^{\bullet-}$ electrochemistry, ¹¹ as shown in Figure 1a. The change from a monoelectronic to a bielectronic O2 reduction process in the presence of phenol has been well documented.8,12 In light of these results, it is rationalized that $O_2^{\bullet-}$ formation after the primary electron-transfer step associated with proton transfer from MOH₂ leads to the irreversible overall reduction of O₂ to H_2O_2 , driven by the exergonic reduction of the resulting HO_2^{\bullet} . This is supported by the fact that addition of MQH₂ to a DMF solution containing equimolar sodium methylate does not affect the electrochemistry of O₂. In contrast, the presence of PQH₂ is not only associated with an apparent decrease in the reversibility of the $O_2/O_2^{\bullet-}$ redox couple but is also associated with the progressive growth of a new cathodic peak and two anodic peaks (A, B, and C in Figure 1b). Remarkably, the O₂ reduction remains a monoelectronic process despite full loss of the O₂/ $O_2^{\bullet-}$ reversibility. This indicates that the HO_2^{\bullet} produced in the electrochemical process is consumed immediately in the reaction with PQH-, without being reduced on the electrode. The electron transfer from PQH⁻ to HO₂[•] has been inferred from ESR and optically transparent thin-layer electrode (OTTLE) spectroelectrochemical measurements, which show the generation of $PQ^{\bullet-}$ despite the applied potentials corresponding to O_2 reduction (Figures 2a and 2b).¹³ In addition, the new redox wave (peak A/B in Figure 1b) is assigned to reversible PQ^{•-}/PQ²⁻ electron transfers as supported by the fact that the OTTLE spectral change corresponds to the PQ²⁻ generation (Figure 2c), and that peak C in Figure 1b corresponds to oxidation of PQ^{•-} to PQ. The spectra and the redox potentials observed here were in complete agreement with those obtained from sequential reduction of PQ.¹⁴ In the case of OQH₂, loss of $O_2/O_2^{\bullet-}$

Figure 1. Cyclic voltammograms of $4.8 \times 10^{-3} \text{ mol dm}^{-3} \text{ O}_2$ in the absence and in the presence of MQH₂ (a), PQH₂ (b), and OQH₂ (c), observed at a scan rate of 0.1 V s^{-1} in DMF containing 0.1 mol dm^{-3} TPAP. Concentrations of QH₂ are 0, 1, 2, 3, and $5 \times 10^{-3} \text{ mol dm}^{-3}$. A typical voltammogram in the presence of PQH₂ ($15 \times 10^{-3} \text{ mol dm}^{-3}$) was also illustrated by a bold solid line in Fig. b.

Figure 2. ESR spectra of the O₂ solution containing PQH₂ (left) and OQH₂ (right) obtained by the controlled-potential electrolysis at an applied potential of -1.2 V (a), and spectral change of the O₂ solution containing PQH₂ with the OTTL electrolyses over applied potentials corresponding to the O₂^{•-} generation (b) and over applied potentials corresponding to peak A in Figure 1b (c), observed in DMF containing 0.1 mol dm⁻³ TPAP. Concentrations of PQH₂ and OQH₂ are 1.0×10^{-3} mol dm⁻³. The OTTL spectra were observed as differential spectra from those of neutral PQH₂.

reversibility without change to a bielectronic process was observed in the cyclic voltammograms of O₂ (Figure 1c), and the OQ^{•-} generation ascribed to reaction of OQH⁻ with HO₂[•] was confirmed by ESR spectra (Figure 2a), in analogy with the case of PQH₂. As the OQ^{•-}/OQ²⁻ redox potential is more positive than the O₂/O₂^{•-} potential, it is deduced that the new cathodic peak (peak A in Figure 1c) may be ascribed to the rereduction of OQ^{•-} to OQ²⁻. Thus, the new anodic peak (peak B in Figure 1c) may be due to electrochemical oxidation of OQ²⁻ to OQ^{•-}.¹⁵ These experimental results indicate that the hydroxy groups located in the *p*- and *o*-positions play an important role in the electron-transfer reaction with HO₂[•].

By analogy with the SFO mechanism, $O_2^{\bullet-}$ formed after the initial electron uptake at the electrode protonates the PQH₂, to afford HO₂[•] and PQH⁻. HO₂[•] rapidly undergoes reaction with PQH⁻ (eq 1) in preference to either heterogeneous reduction at the potential or a disproportionation reaction.

$$\mathrm{HO}_{2}^{\bullet} + \mathrm{PQH}^{-} \to \mathrm{H}_{2}\mathrm{O}_{2} + \mathrm{PQ}^{\bullet-} \tag{1}$$

It is rationalized that reaction (1) involves PCET rather than single-electron transfer, as suggested by recent theoretical investigations.^{3,16,17} Within this framework, the occurrence of a fast ECC (electrochemical-chemical-chemical) sequence is attributed to the exergonic interaction between HO₂• and PQH⁻ and the thermodynamic stability of the ensuing PQ^{•-}. Prior to PCET from PQH⁻ to HO_2^{\bullet} , the couple will form a prereaction hydrogen-bonded complex involving OH of PQH⁻ and one of the O lone pairs on HO2[•]. UB3LYP/6-31+G(d) calculation results indicate that the complex is nearly planar and is predicted to lie 131.0 kJ mol⁻¹ lower in energy than the separated reactants. This situation is expected given that the PCET reaction involves three atomic centers and occurs through the migration of the proton of POH⁻ across the hydrogen bond to an O lone pair on HO_2^{\bullet} , as is shown in Figure 3.^{3,16} The reaction of OQH₂ with $O_2^{\bullet-}$ is explained by the same ECC mechanism. However, a crucial difference in the PCET reaction for MOH₂ seems to be the low stability of the resulting MQ^{$\bullet-$}. The UB3LYP/6-31+G(d) calculated H° value of MQ^{•-} is 57.6 and 27.6 kJ mol⁻¹ higher than that of $PQ^{\bullet-}$ and $OQ^{\bullet-}$, indicating that π -conjugation stability in $MQ^{\bullet-}$ is less than that in either $PQ^{\bullet-}$ or $OQ^{\bullet-}$. The radical anions are an intermediate in the quinone-hydroquinone electron-transfer systems conjugated with proton transfers. This implies that the quinone-hydroquinone π -conjugated redox systems characterized by electron transfer in the PQH₂ and

Figure 3. Schematic showing the plausible mechanism for PCET between PQH⁻ and HO₂[•]. Proton transfer occurs between O lone-pair σ -type orbitals that are nominally in the plane of the molecular framework. Electron transfer between O π -type orbitals that are orthogonal to the molecular framework accompanies the proton transfer.

 OQH_2 moieties play an important role in the scavenging of $O_2^{\bullet-}$ by polyphenolic antioxidants.

In conclusion, it has been demonstrated that PQH_2 and OQH_2 moieties are essential to scavenge $O_2^{\bullet-}$ via PCET. It is suggested that the antioxidant action of flavonoids relates to a planar preference of the ensuing radicals that allows extended electronic delocalization between adjacent rings.¹⁸ In this respect, natural polyphenolic antioxidants characterized by PQH₂ and OQH₂ moieties may have strong activity in scavenging $O_2^{\bullet-}$ in association with stabilization of PQ^{$\bullet-$} and OQ^{$\bullet-$} by adjacent rings.

References and Notes

- R. J. Williams, J. P. E. Spencer, C. Rice-Evans, *Free Radical Biol. Med.* 2004, *36*, 838; C. A. Rice-Evans, N. J. Miller, G. Paganga, *Free Radical Biol. Med.* 1996, *20*, 933.
- 2 F. Visioli, G. Bellomo, C. Galli, *Biochem. Biophys. Res.* Commun. 1998, 247, 60.
- 3 J. S. Wright, E. R. Johnson, G. A. Di Labio, J. Am. Chem. Soc. 2001, 123, 1173.
- 4 M. Leopoldini, I. P. Pitarch, N. Russo, M. Toscano, J. Phys. Chem. A 2004, 108, 92.
- I. Fridovich, J. Biol. Chem. 1997, 272, 18515; J. S. Valentine, P. J. Hart, E. B. Gralla, Adv. Exp. Med. Biol. 1999, 448, 193.
- 6 B. Halliwell, Mutat. Res. 1999, 443, 37.
- 7 H. C. Birnboim, *Carcinogenesis* 1986, 7, 1511; H. C. Birnboim, M. Kanabus-Kaminska, *Proc. Natl. Acad. Sci. U.S.A.* 1985, 82, 6820; A. C. Bagley, J. Krall, R. E. Lynch, *Proc. Natl. Acad. Sci. U.S.A.* 1986, 83, 3189; I. Fridovich, *Arch. Biochem. Biophys.* 1986, 247, 1.
- 8 E. J. Nanni, Jr., M. D. Stallings, D. T. Sawyer, J. Am. Chem. Soc. 1980, 102, 4481; D. T. Sawyer, G. Chiericato, C. T.

Angelis, E. J. Nanni, T. Tsuchiya, *Anal. Chem.* **1982**, *54*, 1720; C. P. Andrieux, P. Hapiot, J. M. Saveant, *J. Am. Chem. Soc.* **1987**, *109*, 3768.

- 9 C. Sotiriou, W. Lee, R. W. Giese, J. Org. Chem. 1990, 55, 2159.
- 10 S. Hodaka, R. Komatsu-Watanabe, T. Ideguchi, S. Sakamoto, K. Ichimori, K. Kanaori, K. Tajima, *Chem. Lett.* 2007, *36*, 1388.
- 11 Cyclic voltammetry was performed with a three-electrode system consisting of a GC disk electrode, a Pt wire counter electrode, and an Ag/AgNO₃ reference electrode at 25 °C. The DMF solution containing 0.1 mol dm⁻³ tetrapropyl-ammonium perchlorate (TPAP) as a supporting electrolyte was saturated with O₂ by bubbling the gas for ca. 2–3 min. The equilibrium concentration of O₂ was calculated as $4.8 \times 10^{-3} \text{ mol dm}^{-3}$.
- 12 S. Peressini, C. Tavagnacco, G. Costa, C. Amatore, J. *Electroanal. Chem.* 2002, 532, 295.

- 13 In the case of MQH₂, no signal for the radical generation showing the electron transfer from MQH[−] to HO₂[•] was obtained by ESR spectrometry.
- 14 B. Uno, N. Okumura, M. Goto, K. Kano, J. Org. Chem. 2000, 65, 1448.
- 15 The redox potential of the $OQ^{\bullet-}/OQ^{2-}$ couple was estimated as $E_{pc} = -0.70$ V and $E_{pa} = -0.63$ V by the cyclic voltammetry of OQH₂ in DMF containing sodium methylate.
- 16 J. M. Mayer, Annu. Rev. Phys. Chem. 2004, 55, 363; J. M. Mayer, D. A. Hrovat, J. L. Thomas, W. T. Borden, J. Am. Chem. Soc. 2002, 124, 11142.
- 17 PCET is differentiated from H-atom-transfer reactions by the fact that it occurs when a proton and an electron are transferred between different sets of molecular orbitals. See ref 14 and Figure 3.
- 18 N. Russo, M. Toscano, N. Uccella, J. Agric. Food Chem. 2000, 48, 3232.